CHEMISTRY OPTIONAL SYLLABUS
Chemistry is a popular optional subject for UPSC IAS aspirants with a science background. It offers a well-defined syllabus, which, when thoroughly understood, can be highly scored. This blog post provides an in-depth overview of the UPSC Chemistry optional syllabus for both Paper I and Paper II, along with preparation strategies to help you achieve your best score.
Paper I: Chemistry Optional Syllabus
-
Atomic Structure:
Heisenberg’s uncertainty principle Schrodinger wave equation (time independent); Interpretation of wave function, particle in one- dimensional box, quantum numbers, hydrogen atom wave functions; Shapes of s, p and d orbitals.
-
Chemical Bonding:
Ionic bond, characteristics of ionic compounds, lattice energy, Born-Haber cycle; covalent bond and its general characteristics, polarities of bonds in molecules and their dipole moments; Valence bond theory, concept of resonance and resonance energy; Molecular orbital theory (LCAO method) bonding H2 +, H2 He2 + to Ne2, NO, CO, HF, CN–, Comparison of valence bond and molecular orbital theories, bond order, bond strength and bond length.
-
Solid State:
Crystal systems; Designation of crystal faces, lattice structures and unit cell; Bragg’s law; X-ray diffraction by crystals; Close packing, radius ratio rules, calculation of some limiting radius ratio values; Structures of NaCl, ZnS, CsCl, CaF2; stoichiometric and nonstoichiometric defects, impurity defects, semiconductors.
-
The gaseous state and Transport Phenomenon:
Equation of state for real gases, intermolecular interactions, and critical phenomena and liquefaction of gases; Maxwell’s distribution of speeds, intermolecular collisions, collisions on the wall and effusion; Thermal conductivity and viscosity of ideal gases.
-
Liquid State:
Kelvin equation; Surface tension and surface enercy, wetting and contact angle, interfacial tension and capillary action.
-
Thermodynamics:
Work, heat and internal energy; first law of thermodynamics. Second law of thermodynamics; entropy as a state function, entropy changes in various processes, entropy-reversibility and irreversibility, Free energy functions; Thermodynamic equation of state; Maxwell relations; Temperature, volume and pressure dependence of U, H, A, G, Cp and Cv; J-T effect and inversion temperature; criteria for equilibrium, relation between equilibrium constant and thermodynamic quantities; Nernst heat theorem, introductory idea of third law of thermodynamics.
-
Phase equilibria and solutions:
Clausius-Clapeyron equation; phase diagram for a pure substance; phase equilibria in binary systems, partially miscible liquids—upper and lower critical solution temperatures; partial molar quantities, their significance and determination; excess thermodynamic functions and their determination.
-
Electrochemistry:
a) Debye-Huckel theory of strong electrolytes and Debye-Huckel limiting Law for various equilibrium and transport properties.
b) Galvanic cells, concentration cells; electrochemical series, measurement of e.m.f. of cells and its applications fuel cells and batteries.
Processes at electrodes; double layer at the interface; rate of charge transfer, current density; overpotential; electroanalytical techniques : amperometry, ion selective electrodes and their use.
-
Chemical Kinetics:
-
c) Differential and integral rate equations for zeroth, first, second and fractional order reactions; Rate equations involving reverse, parallel, consecutive and chain reactions; Branching chain and explosions; effect of temperature and pressure on rate constant. Study of fast reactions by stop-flow and relaxation methods. Collisions and transition state theories.
-
Photochemistry:
Absorption of light; decay of excited state by different routes; photochemical reactions between hydrogen and halogens and their quantum yields.
-
Surface phenomena and catalysis:
Adsorption from gases and solutions on solid adsorbents; Langmuir and B.E.T. adsorption isotherms; determination of surface area, characteristics and mechanism of reaction on heterogeneous catalysts.
-
Bio-inorganic chemistry:
Metal ions in biological systems and their role in ion-transport across the membranes (molecular mechanism), oxygen-uptake proteins, cytochromes and ferrodoxins.
-
Coordination chemistry:
a) Bonding in transition of metal complexes. Valence bond theory, crystal field theory and its modifications; applications of theories in the explanation of magnetism and elctronic spectra of metal complexes.
b) Isomerism in coordination compounds; IUPAC nomenclature of coordination compounds; stereochemistry of complexes with 4 and 6 coordination numbers; chelate effect and polynuclear complexes; trans effect and its theories; kinetics of substitution reactions in square-planar complexes; thermodynamic and kinetic stability of complexes.
c) EAN rule, Synthesis structure and reactivity of metal carbonyls; carboxylate anions, carbonyl hydrides and metal nitrosyl compounds.
d) Complexes with aromatic systems, synthesis, structure and bonding in metal olefin complexes, alkyne complexes and cyclopentadienyl complexes; coordinative unsaturation, oxidative addition reactions, insertion reactions, fluxional molecules and their characterization; Compounds with metal—metal bonds and metal atom clusters.
-
Main Group Chemistry:
Boranes, borazines, phosphazenes and cyclic phosphazene, silicates and silicones, Interhalogen compounds; Sulphur—nitrogen compounds, noble gas compounds.
-
General Chemistry of ‘f’ Block Element:
Lanthanides and actinides: separation, oxidation states, magnetic and spectral properties; lanthanide contraction.
Paper II: Chemistry Optional Syllabus
-
Delocaised covalent bonding:
Aromaticity, anti-aromaticity; annulenes, azulenes, tropolones, fulvenes, sydnones.
-
Reaction Mechanisms
Reaction mechanisms : General methods (both kinetic and non-kinetic) of study of mechanisms or organic reactions : isotopies, mathod cross-over experiment, intermediate trapping, stereochemistry; energy of activation; thermodynamic control and kinetic control of reactions.
Reactive intermediates : Generation, geometry, stability and reactions of carboniumions and carbanions, free radicals, carbenes, benzynes and nitrenes.
Substitution reactions :—SN 1, SN 2, and SN i, mechanisms ; neighbouring group Government strives to have a workforce which reflects gender balance and women candidates are encouraged to apply. participation; electrophilic and nucleophilic reactions of aromatic compounds including heterocyclic compounds—pyrrole, furan, thiophene and indole.
Elimination reactions :—E1, E2 and E1cb mechanisms; orientation in E2 reactions— Saytzeff and Hoffmann; pyrolytic syn elimination—acetate pyrolysis, Chugaev and Cope eliminations.
Addition reactions :—Electrophilic addition to C=C and CC; nucleophilic addition to C=O, CN, conjugated olefins and carbonyls.
Reactions and Rearrangements :—(a) Pinacol-pinacolone, Hoffmann, Beckmann, BaeyerVilliger, Favorskii, Fries, Claisen, Cope, Stevens and Wagner—Meerwein rearrangements.
Aldol condensation, Claisen condensation, Dieckmann, Perkin, Knoevenagel, Witting, Clemmensen, Wolff-Kishner, Cannizzaro and von Richter reactions; Stobbe, benzoin and acyloin condensations; Fischer indole synthesis, Skraup synthesis, Bischler-Napieralski, Sandmeyer, Reimer-Tiemann and Reformatsky reactions.
-
Pericyclic Reactions:
Classification and examples; Woodward-Hoffmann rules—electrocyclic reactions, cycloaddition reactions [2+2 and 4+2] and sigmatropic shifts [1, 3; 3, 3 and 1, 5], FMO approach.
-
Polymers
- Preparation and Properties of Polymers: Organic polymerspolyethylene, polystyrene, polyvinyl chloride, teflon, nylon, terylene, synthetic and natural rubber.
- Biopolymers: Structure of proteins, DNA and RNA.
-
Synthetic Uses of Reagents:
OsO4, HlO4, CrO3, Pb(OAc)4, SeO2, NBS, B2H6, Na-Liquid NH3, LiAIH4, NaBH4, n-BuLi, MCPBA.
-
Photochemistry:
Photochemical reactions of simple organic compounds, excited and ground states, singlet and triplet states, Norrish-Type I and Type II reactions.
-
Spectroscopy:
- Principle and applications in structure elucidation:
- Rotational: Diatomic molecules; isotopic substitution and rotational constants.
- Vibrational: Diatomic molecules, linear triatomic molecules, specific frequencies of functional groups in polyatomic molecules.
- Electronic: Singlet and triplet states. n→π* and π→π* transitions; application to conjugated double bonds and conjugated carbonyls Woodward-Fieser rules; Charge transfer spectra.
- Nuclear Magnetic Resonance (1HNMR): Basic principle; chemical shift and spin-spin interaction and coupling constants.
- Mass Spectrometry: Parent peak, base peak, metastable peak, McLafferty rearrangement.